Normal frames and the validity of the equivalence principle III . The case along smooth maps with separable points of self - intersection
نویسنده
چکیده
The equivalence principle is treated on a mathematically rigorous base on sufficiently general subsets of a differentiable manifold. This is carried out using the basis of derivations of the tensor algebra over that manifold. Necessary and/or sufficient conditions of existence, uniqueness, and holonomicity of these bases in which the components of the derivations of the tensor algebra over it vanish on these subsets, are studied. The linear connections are considered in this context. It is shown that the equivalence principle is identically valid at any point, and along any path, in every gravitational theory based on linear connections. On higher dimensional submanifolds it may be valid only in certain exceptional cases.
منابع مشابه
Special Bases for Derivations of Tensor Algebras III. Case along Smooth Maps with Separable Points of Selfintersection
Necessary and/or sufficient conditions are studied for the existence, uniqueness and holonomicity of bases in which on sufficiently general subsets of a differentiable manifold the components of derivations of the tensor algebra over it vanish. The linear connections and the equivalence principle are considered form that point of view.
متن کاملNormal frames and the validity of the equivalence principle II . The case along paths
We investigate the validity of the equivalence principle along paths in gravitational theories based on derivations of the tensor algebra over a differentiable manifold. We prove the existence of local bases, called normal, in which the components of the derivations vanish along arbitrary paths. All such bases are explicitly described. The holonomicity of the normal bases is considered. The res...
متن کاملMultiple point of self-transverse immesions of certain manifolds
In this paper we will determine the multiple point manifolds of certain self-transverse immersions in Euclidean spaces. Following the triple points, these immersions have a double point self-intersection set which is the image of an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold $V^5$ or a boundary. We will show there is an immersion of $S^7times P^2$ in $mathbb{R}^{1...
متن کاملOPTIMAL NOZZLE SHAPES OF CO2-N2-H2O GASDYNAMIC LASERS
In an axisymmetric CO2-N2-H2O gas dynamic laser, let ? denote the intersection of the vertical plane of symmetry with the upper part of the (supersonic) nozzle. To obtain a maximal small signal gain, some authors have tested several families of curves for ?. To find the most general solution for ?, an application of Pontryagin’s principle led to the conjuncture that the optimal ? must consist o...
متن کاملA new approach for assessing stability of rock slopes considering centroids of weak zones
The intersection lines between discontinuity surfaces and their intersection points on the visible surfaces of any engineering structure may be the instability indicators. This paper describes a new approach to modelling the intersecting lines and points that would provide the first evaluation of any instability in an engineering structure characterized by the failure modes. In this work, the i...
متن کامل